289 research outputs found

    Feeling Home

    Get PDF
    For the thesis, I designed and created individual pieces of furniture and other objects that contribute to a sophisticated, cohesive atmosphere that reminds viewers of home: a comfortable and happy environment. The reason I chose this concept is that I have been away from my hometown for a long time, where I am familiar and relaxed in my surroundings. As time passed, I missed the comforting atmosphere of my home. Therefore, I used furniture as a structural element to build and create a place that inspires home emotions. Referring to Asian culture and aesthetics, I chose the concept of the circle as my guiding design inspiration. The circle means being together, harmony, and all-encompassing completeness. A circle is also a form that exists everywhere in daily life and throughout human culture, from the sun and moon to objects in our everyday household. Therefore, the circle is a critical connection to my work. I strive to bring closeness to the relationship between furniture, home, and atmosphere. Home is the place where people live, and in this space, furniture is a crucial part of building a home. It is also an essential tool that helps us in our daily life. I embody the concept of home and its atmosphere into my work through details, choice of materials, manufacturing processes, and my design language

    Acoustic higher-order topological insulator on a Kagome lattice

    Full text link
    High-order topological insulators (TIs) are a family of recently-predicted topological phases of matter obeying an extended topological bulk-boundary correspondence principle. For example, a two-dimensional (2D) second-order TI does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D TI, but instead has topologically-protected zero-dimensional (0D) corner states. So far, higher-order TIs have been demonstrated only in classical mechanical and electromagnetic metamaterials exhibiting quantized quadrupole polarization. Here, we experimentally realize a second-order TI in an acoustic metamaterial. This is the first experimental realization of a new type of higher-order TI, based on a breathing Kagome lattice, that has zero quadrupole polarization but nontrivial bulk topology characterized by quantized Wannier centers (WCs). Unlike previous higher-order TI realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the Kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically-protected but reconfigurable local resonances.Comment: 15 pages, 4 figure

    Application of the dynamic condensation approach to the hybrid FE-SEA model of mid-frequency vibration in complex built-up systems

    Get PDF
    The hybrid Finite Element (FE) – Statistical Energy Analysis (SEA) method developed for mid-frequency vibration of complex built-up systems needs to compute the total dynamic flexibility matrix at every frequency, which is very time consuming. This paper presents an improved hybrid FE-SEA method to overcome this problem. In the present method, first, dynamic condensation is introduced to reduce the order of the deterministic FE component, which results in significant reduction of the total dynamic stiffness matrix. Then, noting that the dynamic stiffness matrix of the deterministic component is established by using the FE method, a fast inverse algorithm is employed to calculate the dynamic flexibility matrix of the slave degrees of freedom of the deterministic component generated in the condensation process. These two steps avoid the direct inverse computation of a large matrix at each frequency point of interest, resulting in significant time saving. A numerical example illustrates the efficiency and convergence of the proposed method

    Optimization of mid-frequency vibration for complex built-up systems using hybrid finite element–statistical energy analysis method

    Get PDF
    This article deals with the sensitivity analysis of dynamic response and optimal size design of complex built-up systems in the mid-frequency range. A complex built-up system may be fabricated from many components which often differ greatly in materials and sizes. It may be subjected to many different wavelength structural deformations and may typically exhibit mixed mid-frequency behaviour which is very sensitive to uncertainties at higher frequencies. To perform optimization on the mid-frequency vibration of complex built-up systems, the hybrid finite element (FE)–statistical energy analysis (SEA) method, in which the deterministic and statistical subsystem are respectively modelled using FE and SEA, is implemented in this work. In this context, an efficient direct differentiation method for sensitivity analysis is derived. Two numerical examples illustrate the efficiency and effectiveness of the proposed optimization model

    A hybrid boundary element-statistical energy analysis for the mid-frequency vibration of vibro-acoustic systems

    Get PDF
    Based on the concept of hybrid Finite Element (FE) analysis and Statistical Energy Analysis (SEA), a new hybrid method is developed for the mid-frequency vibration of vibro-acoustic systems. The Boundary Element (BE) method is used to describe the motion of a deterministic acoustic cavity. By enforcing the continuity conditions of displacement and velocity at the coupling interface, the dynamic coupling between the deterministic acoustic cavity and the statistical structure described by SEA is established. Then, a hybrid BE-SEA method for the mid-frequency vibration of vibro-acoustic systems is proposed. Post-processing provides formulations for calculating the sound pressure at points inside the acoustic cavity. Due to the nature of the BE method for acoustics, the proposed method not only has few degrees of freedom, but also automatically satisfies the Sommerfeld radiation condition at infinity for exterior acoustics problems. A numerical example compares results from the proposed hybrid BE-SEA method with those from the hybrid FE-SEA method and Monte Carlo simulation. The comparison illustrates that the proposed method gives good predictions for the mid-frequency behavior of vibro-acoustic systems and has the fewest degrees of freedom

    Determination of Optimal Opening Scheme for Electromagnetic Loop Networks Based on Fuzzy Analytic Hierarchy Process

    Get PDF
    Studying optimization and decision for opening electromagnetic loop networks plays an important role in planning and operation of power grids. First, the basic principle of fuzzy analytic hierarchy process (FAHP) is introduced, and then an improved FAHP-based scheme evaluation method is proposed for decoupling electromagnetic loop networks based on a set of indicators reflecting the performance of the candidate schemes. The proposed method combines the advantages of analytic hierarchy process (AHP) and fuzzy comprehensive evaluation. On the one hand, AHP effectively combines qualitative and quantitative analysis to ensure the rationality of the evaluation model; on the other hand, the judgment matrix and qualitative indicators are expressed with trapezoidal fuzzy numbers to make decision-making more realistic. The effectiveness of the proposed method is validated by the application results on the real power system of Liaoning province of China

    Realization of an acoustic third-order topological insulator

    Full text link
    The recent discovery of higher-order topological insulators (TIs) has opened new possibilities in the search for novel topological materials and metamaterials. Second-order TIs have been implemented in two-dimensional (2D) systems exhibiting topological 'corner states', as well as three-dimensional (3D) systems having one-dimensional (1D) topological 'hinge states'. Third-order TIs, which have topological states three dimensions lower than the bulk (which must thus be 3D or higher), have not yet been reported. Here, we describe the realization of a third-order TI in an anisotropic diamond-lattice acoustic metamaterial. The bulk acoustic bandstructure has nontrivial topology characterized by quantized Wannier centers. By direct acoustic measurement, we observe corner states at two corners of a rhombohedron-like structure, as predicted by the quantized Wannier centers. This work extends topological corner states from 2D to 3D, and may find applications in novel acoustic devices

    Topology optimization of sound absorbing layer for the mid-frequency vibration of vibro-acoustic systems

    Get PDF
    Due to the significant difference of dynamic properties between the fluid medium and the structure, when a vibro-acoustic system is subjected to a higher frequency excitation, it may typically exhibit mid-frequency behavior which involves different wavelength deformations and is very sensitive to the uncertainties of the system. This paper deals with optimized distribution of a sound absorbing layer for the mid-frequency vibration of vibro-acoustic systems by using hybrid boundary element analysis and statistical energy analysis. Based on the solid isotropic material with penalization approach, an artificial sound absorbing material model is suggested and the relative densities of the sound absorbing material are taken as design variables. The sound pressure level at a specified point in the acoustic cavity is to be minimized by distributing a given amount of sound absorbing material. An efficient direct differentiation scheme for the response sensitivity analysis is proposed. Then, the optimization problem is solved by using the method of moving asymptotes. A numerical example illustrates the validity and effectiveness of the present optimization model. Impact of the excitation frequency on optimized topology is also discussed

    Hybrid-learning-based classification and quantitative inference of driver braking intensity of an electrified vehicle

    Get PDF
    The recognition of driver's braking intensity is of great importance for advanced control and energy management for electric vehicles. In this paper, the braking intensity is classified into three levels based on novel hybrid unsupervised and supervised learning methods. First, instead of selecting threshold for each braking intensity level manually, an unsupervised Gaussian Mixture Model is used to cluster the braking events automatically with brake pressure. Then, a supervised Random Forest model is trained to classify the correct braking intensity levels with the state signals of vehicle and powertrain. To obtain a more efficient classifier, critical features are analyzed and selected. Moreover, beyond the acquisition of discrete braking intensity level, a novel continuous observation method is proposed based on Artificial Neural Networks to quantitative analyze and recognize the brake intensity using the prior determined features of vehicle states. Experimental data are collected in an electric vehicle under real-world driving scenarios. Finally, the classification and regression results of the proposed methods are evaluated and discussed. The results demonstrate the feasibility and accuracy of the proposed hybrid learning methods for braking intensity classification and quantitative recognition with various deceleration scenarios

    TRA-910: CONNECTED VEHICLE V2I COMMUNICATION APPLICATION TO ENHANCE DRIVER AWARENESS AT SIGNALIZED INTERSECTIONS

    Get PDF
    This study introduces a Vehicle-To-Infrastructure (V2I) architecture to enhance driver awareness at signalized intersections. The main objectives are to (i) provide a proof-of-concept field experiment on the use of V2I communication architecture at a signalized intersection and (ii) evaluate the impact of V2I communication on improving driver performance while crossing the intersection. The proposed V2I communication application will relay an advisory auditory message to the driver regarding the status of the traffic signal. It is expected that driver behaviour is going to change as a result of the in-vehicle audible message. Consequently, the proposed application will collect additional driver performance indicators which include information on average speed, maximum speed, and the acceleration\deceleration profiles. To understand the impact of the advisory message on changing driver behaviour, a comparison was performed between the indicators with and without the in-vehicle message. Driver behavior was investigated under two scenarios, namely; as the driver heads towards a green signal and as the driver heads towards a red signal. For both scenarios, the results show that the average speed of the driver have changed significantly after turning “on” the in-vehicle messages. In addition, the maximum speed distribution shifted towards a lower value indicating decreases in maximum speeds. Moreover, the difference between the acceleration\deceleration profiles near the intersection when driving with and without the message, while heading towards a red signal, was found to be significant. These preliminary results show that the proposed V2I communication application can have promising impacts on improving driver awareness at signalized intersections
    • …
    corecore